

1. What are NLP logs and why are they interesting?

Perturbation theory

A generic observable can be written as

$$
\sigma=\sum_{n} c_{n} \alpha_{s}^{n}
$$

The c_{n} are computed using Feynman diagrams

Hopefully, only a limited number of orders is sufficient to describe the process...

... which is only true if the c_{n} are small enough

LO process

LO process

NLO process

Real emission of a gluon

NLO process

Real emission of a gluon

$$
s^{\prime}=\left(p_{1}+p_{2}-k\right)^{2} \equiv z s=Q^{2}
$$

NLO process

Emission of a soft gluon:

 the eikonal Feynman rule

Real emission of a gluon

$$
s^{\prime}=\left(p_{1}+p_{2}-k\right)^{2} \equiv z s=Q^{2}
$$

NLO process

Emission of a soft gluon:

 the eikonal Feynman rule

Real emission of a gluon

$$
s^{\prime}=\left(p_{1}+p_{2}-k\right)^{2} \equiv z s=Q^{2}
$$

NLO process

Real emission of a gluon

Virtual exchange of a gluon

Origin of large logarithms

Why is this a problem?

Perturbation theory:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n} c_{n} \alpha_{s}^{n}=\sigma_{0} \delta(1-z)+\alpha_{s}\left(\sum_{m=0}^{m=1} d_{1 m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{1}^{\prime} \delta(1-z)+f_{1}\right)+\ldots
$$

Hopefully, only a limited number of orders is sufficient to describe the process

... which is only true if the c_{n} are small enough

Why is this a problem?

Perturbation theory:

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n} c_{n} \alpha_{s}^{n}=\sigma_{0} \delta(1-z)+\alpha_{s}\left(\sum_{m=0}^{m=1} d_{1 m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{1}^{\prime} \delta(1-z)+f_{1}\right)+\ldots \\
\text { for } z \rightarrow 1 \text { this is not small... }
\end{array}
$$

Hopefully, only a limited number of orders is sufficient to describe the process
... which is only true if the c_{n} are small enough

It gets worse...

There is no guarantee that the next order will get smaller!

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+f_{n}\right]
$$

Can we trust the perturbative result in the domain $z \rightarrow 1$?

What if... We could predict the form of $d_{n m}$ for all n ?

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+f_{n}\right]
$$

What if... We could predict the form of $d_{n m}$ for all n ?

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+f_{n}\right]
$$

And we would organise the perturbative series in a new way

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z}=\sum_{n=1}^{\infty} \alpha_{s}^{n} d_{2 n-1}\left(\frac{\ln ^{2 n-1}(1-z)}{1-z}\right)_{+}+\sum_{n=1}^{\infty} \alpha_{s}^{n} d_{2 n-2}\left(\frac{\ln ^{2 n-2}(1-z)}{1-z}\right)_{+}+\ldots+\sum_{n=0}^{\infty} \alpha_{s}^{n}\left[f_{n}\right]
$$

Resummation requires that:

1. You find a predictive pattern for the logarithms that works up to all orders
2. You can factorise these contributions from everything else that is going on in your process at higher orders

Resummation requires that:

1. You find a predictive pattern for the logarithms that works up to all orders
2. You can factorise these contributions from everything else that is going on in your process at higher orders
```
One of several methods may then be exploited to prove
that the logarithms organise themselves in exponents
    thereby they are resummed
```


Resummation: A new series

LO	1			
NLO	$\alpha_{s} L^{2}$	$\alpha_{s} L$	α_{s}	
NNLO	$\alpha_{s}^{2} L^{4}$	$\alpha_{s}^{2} L^{3}$	$\alpha_{s}^{2} L^{2}$	\cdots
N'LO	$\alpha_{s}^{n} L^{2 n}$	$\alpha_{s}^{n} L^{2 n-1}$	$\alpha_{s}^{n} L^{2 n-2}$	\ldots

$$
\sigma_{\text {resum }}=\sigma_{0} e^{\frac{1}{\alpha_{s}} g^{(1)}\left(\alpha_{s} L\right)} e^{g^{(2)}\left(\alpha_{s} L\right)} \ldots
$$

Resummation: A new series

LO	1			
NLO	$\alpha_{s} L^{2}$	$\alpha_{s} L$	α_{s}	
NNLO	$\alpha_{s}^{2} L^{4}$	$\alpha_{s}^{2} L^{3}$	$\alpha_{s}^{2} L^{2}$	\cdots
N'LO	$\alpha_{s}^{n} L^{2 n}$	$\alpha_{s}^{n} L^{2 n-1}$	$\alpha_{s}^{n} L^{2 n-2}$	\cdots

$$
\sigma_{\text {resum }}=\sigma_{0} e^{\frac{1}{\alpha_{S}} g^{(1)}\left(\alpha_{s} L\right)} e^{g^{(2)}\left(\alpha_{s} L\right)} \ldots
$$

Resummation: A new series

LO	1			
NLO	$\alpha_{s} L^{2}$	$\alpha_{s} L$	α_{s}	
NNLO	$\alpha_{s}^{2} L^{4}$	$\alpha_{s}^{2} L^{3}$	$\alpha_{s}^{2} L^{2}$	\cdots
N'LO	$\alpha_{s}^{n} L^{2 n}$	$\alpha_{s}^{n} L^{2 n-1}$	$\alpha_{s}^{n} L^{2 n-2}$	\cdots

$$
\sigma_{\text {resum }}=\sigma_{0} e^{\frac{1}{\alpha_{S}} g^{(1)}\left(\alpha_{s} L\right)} e^{g^{(2)}\left(\alpha_{s} L\right)} \ldots
$$

Leading-power contributions

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z} \propto \sum_{n=0}^{\infty} \alpha_{s}^{n}\left[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+f_{n}\right]
$$

- Universal process-independent form
- Localized at threshold
- Linked to the soft and collinear divergences
- Resummation well understood

But there is more...

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z} \propto \sum_{n=0}^{\infty} \alpha_{s}^{n}[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+\underbrace{d_{n m}^{\prime \prime} \ln ^{m}(1-z)+f_{n}^{\prime}}_{f_{n}}]
$$

Next-to-leading-power (NLP)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z} \propto \sum_{n=0}^{\infty} \alpha_{s}^{n}\left[\sum_{m=0}^{2 n-1} d_{n m}\left(\frac{\ln ^{m}(1-z)}{1-z}\right)_{+}+d_{n}^{\prime} \delta(1-z)+d_{n m}^{\prime \prime} \ln ^{m}(1-z)+f_{n}^{\prime}\right]
$$

No general resummation framework for these!
Understanding them is important because:

- Increasing experimental precision makes them relevant
- Check of higher-order corrections
- Help to reduce scale uncertainties

Universality of NLP logs

Let us first examine what happens when a colourless final state is produced

NLO Amplitude at NLP

NLO Amplitude at NLP

$\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)$

NLO Amplitude at NLP

$\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)$

NLO Amplitude at NLP

$\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)$

NLO Amplitude at NLP

$\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)$

NLO Amplitude at NLP

Eikonal

$$
\begin{gathered}
\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k) \\
\mathcal{O}\left(\frac{1}{k}\right)
\end{gathered}
$$

NLO Amplitude at NLP

Scalar

$$
\begin{gathered}
\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k) \\
\mathcal{O}\left(\frac{1}{k}\right)+\mathcal{O}(1)
\end{gathered}
$$

NLO Amplitude at NLP

$$
\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \sum_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha} \begin{array}{c}
\frac{i}{4}\left[\gamma^{\sigma}, \gamma^{\alpha}\right] \equiv S^{\sigma \alpha} \\
i\left(g^{\rho \sigma} g^{\alpha v}-g^{\sigma v} g^{\alpha \rho}\right) \equiv M^{\sigma \alpha, \rho v}
\end{array}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)
$$

NLO Amplitude at NLP

$$
\begin{aligned}
\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k) \\
\mathcal{O}(1)
\end{aligned} L_{i}^{\sigma \alpha}=-i\left(p_{i}^{\sigma} \frac{\partial}{\partial p_{i \alpha}}-p_{i}^{\alpha} \frac{\partial}{\partial p_{i \sigma}}\right) .
$$

NLO Amplitude at NLP

$$
\begin{aligned}
\mathscr{A}_{\mathrm{NLP}} & =\sum_{i=1}^{n=2} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k) \\
& =\mathscr{A}_{\text {scal }}+\mathscr{A}_{\text {spin }}+\mathscr{A}_{\text {orb }}
\end{aligned}
$$

Towards the NLP cross section

$$
\begin{aligned}
&\left|\mathscr{A}_{\mathrm{NLP}}\right|^{2}=\sum_{\text {colors }}\left|\mathscr{A}_{\mathrm{scal}}\right|^{2}+2 \operatorname{Re}\left[\left(\mathscr{A}_{\mathrm{spin}}+\mathscr{A}_{\mathrm{orb}}\right)^{\dagger} \mathscr{A}_{\text {scal }}\right] \\
& \propto \mathcal{O}\left(\frac{1}{k^{2}}\right) \quad
\end{aligned}
$$

Towards the NLP cross section

$$
\begin{aligned}
\left|\mathscr{A}_{\mathrm{NLP}}\right|^{2} & =\sum_{\text {colors }}\left|\mathscr{A}_{\text {scal }}\right|^{2}+2 \operatorname{Re}\left[\left(\mathscr{A}_{\text {spin }}+\mathscr{A}_{\text {orb }}\right)^{\dagger} \mathscr{A}_{\text {scal }}\right] \\
& =K \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}\left|\mathscr{M}_{\mathrm{LO}}\left(p_{1}+\boldsymbol{\delta} p_{1}, p_{2}+\boldsymbol{\delta} p_{2}\right)\right|^{2}
\end{aligned}
$$

Towards the NLP cross section

$$
\begin{aligned}
\left|\mathscr{A}_{\mathrm{NLP}}\right|^{2} & =\sum_{\text {colors }}\left|\mathscr{A}_{\text {scal }}\right|^{2}+2 \operatorname{Re}\left[\left(\mathscr{A}_{\text {spin }}+\mathscr{A}_{\text {orb }}\right)^{\dagger} \mathscr{A}_{\text {scal }}\right] \\
& =K \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}\left|\mathscr{M}_{\mathrm{LO}}\left(p_{1}+\boldsymbol{\delta} p_{1}, p_{2}+\boldsymbol{\delta} p_{2}\right)\right|^{2}
\end{aligned}
$$

Eikonal factor

Towards the NLP cross section

$$
\begin{aligned}
\left|\mathscr{A}_{\mathrm{NLP}}\right|^{2} & =\sum_{\text {colors }}\left|\mathscr{A}_{\text {scal }}\right|^{2}+2 \operatorname{Re}\left[\left(\mathscr{A}_{\text {spin }}+\mathscr{A}_{\text {orb }}\right)^{\dagger} \mathscr{A}_{\text {scal }}\right] \\
& =K \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}\left|\mathscr{M}_{\mathrm{LO}}\left(p_{1}+\delta p_{1}, p_{2}+\delta p_{2}\right)\right|^{2}
\end{aligned}
$$

Shift in Born matrix element

$$
\delta p_{i, j}^{\alpha} \equiv-\frac{1}{2}\left(k^{\alpha}+\frac{p_{j} \cdot k}{p_{i} \cdot p_{j}} p_{i}^{\alpha}-\frac{p_{i} \cdot k}{p_{i} \cdot p_{j}} p_{j}^{\alpha}\right)
$$

Towards the NLP cross section

Integration over phase space: $\quad \frac{\mathrm{d} \sigma_{\mathrm{NLP}}}{\mathrm{d} Q}=K K_{\mathrm{NLP}} \sigma_{\mathrm{Born}}(Q)$

Towards the NLP cross section

Integration over phase space: $\quad \frac{\mathrm{d} \sigma_{\mathrm{NLP}}}{\mathrm{d} Q}=K K_{\mathrm{NLP}} \sigma_{\mathrm{Born}}(Q)$

$$
K_{\mathrm{NLP}}=\frac{\alpha_{s}}{\pi}\left(\frac{\bar{\mu}^{2}}{s}\right)^{\epsilon}\left[-\frac{2}{\epsilon}\left(\left(\frac{1}{1-z}\right)_{+}-1\right)+4\left(\frac{\ln (1-z)}{1-z}\right)_{+}-4 \ln (1-z)+\frac{1}{\varepsilon^{2}} \delta(1-z)+\ldots\right]
$$

Towards the NLP cross section

Integration over phase space: $\quad \frac{\mathrm{d} \sigma_{\mathrm{NLP}}}{\mathrm{d} Q}=K K_{\mathrm{NLP}} \sigma_{\mathrm{Born}}(Q)$

$$
K_{\mathrm{NLP}}=\frac{\alpha_{s}}{\pi}\left(\frac{\bar{\mu}^{2}}{s}\right)^{\epsilon}\left[-\frac{2}{\epsilon}\left(\left(\frac{1}{1-z}\right)_{+}-1\right)+4\left(\frac{\ln (1-z)}{1-z}\right)_{+}-4 \ln (1-z)+\frac{1}{\varepsilon^{2}} \delta(1-z)+\ldots\right]
$$

NLP log with the same coefficient as the LP log!

Towards the NLP cross section

Integration over phase space: $\quad \frac{\mathrm{d} \sigma_{\mathrm{NLP}}}{\mathrm{d} Q}=K K_{\mathrm{NLP}} \sigma_{\mathrm{Born}}(Q)$

$$
\begin{aligned}
K_{\mathrm{NLP}} & =\frac{\alpha_{s}}{\pi}\left(\frac{\bar{\mu}^{2}}{s}\right)^{\epsilon}\left[-\frac{2}{\epsilon}\left(\left(\frac{1}{1-z}\right)_{+}-1\right)+4\left(\frac{\ln (1-z)}{1-z}\right)_{+}-4 \ln (1-z)+\frac{1}{\varepsilon^{2}} \delta(1-z)+\ldots\right] \\
& =z K_{\mathrm{LP}}
\end{aligned}
$$

Let's extend these results

- What happens with coloured particles in the final state?
- What role do soft quarks play?

Prompt photon production

$$
p p \rightarrow \gamma+X
$$

Simplest channel: $q \bar{q}$

$$
q\left(p_{1}\right) \bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) g\left(p_{R}\right)
$$

Similar NLP amplitude emerges!

Similar NLP amplitude emerges!

$$
\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n=3} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma} \pm k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}} \varepsilon_{\sigma}^{*}(k)
$$

Towards the NLP cross section

Process: $q\left(p_{1}\right) \bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) g\left(p_{R}\right)$

$$
\begin{aligned}
\left|\mathscr{A}_{\mathrm{NLP}, q \bar{q}}\right|^{2}=\frac{C_{F}}{C_{A}}[& C_{F} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right|^{2} \\
& +\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{R}}{\left(p_{1} \cdot k\right)\left(p_{R} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; R}, p_{R}-\delta p_{R ; 1}\right)\right|^{2} \\
& +\frac{1}{2} C_{A} \frac{2 p_{2} \cdot p_{R}}{\left(p_{2} \cdot k\right)\left(p_{R} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{2}+\delta p_{2 ; R}, p_{R}-\delta p_{R ; 2}\right)\right|^{2} \\
& \left.-\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right|^{2}\right]
\end{aligned}
$$

Towards the NLP cross section

	Process: $q\left(p_{1}\right) \bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) g\left(p_{R}\right)$ Eikonal factors
$\left\|\mathscr{A}^{\mathrm{NLP}, q \bar{q}}\right\|^{2}=$	$\frac{C_{F}}{C_{A}}\left[C_{F} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left\|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right\|^{2}\right.$
	$+\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{R}}{\left(p_{1} \cdot k\right)\left(p_{R} \cdot k\right)}\left\|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\boldsymbol{\delta} p_{1 ; R}, p_{R}-\delta p_{R ; 1}\right)\right\|^{2}$
Interferences are created!	$+\frac{1}{2} C_{A} \frac{2 p_{2} \cdot p_{R}}{\left(p_{2} \cdot k\right)\left(p_{R} \cdot k\right)}\left\|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{2}+\delta p_{2 ; R}, p_{R}-\delta p_{R ; 2}\right)\right\|^{2}$
	$-\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left\|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right\|^{2}$

Towards the NLP cross section

$$
\begin{aligned}
& \text { Process: } q\left(p_{1}\right) \bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) g\left(p_{R}\right) \\
& \left|\mathscr{A}_{\mathrm{NLP}, q \bar{q}}\right|^{2}=\frac{C_{F}}{C_{A}}[
\end{aligned} \begin{aligned}
& C_{F} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right|^{2} \\
&+\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{R}}{\left(p_{1} \cdot k\right)\left(p_{R} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; R}, p_{R}-\delta p_{R ; 1}\right)\right|^{2} \\
&+\frac{1}{2} C_{A} \frac{2 p_{2} \cdot p_{R}}{\left(p_{2} \cdot k\right)\left(p_{R} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{2}+\delta p_{2 ; R}, p_{R}-\delta p_{R ; 2}\right)\right|^{2} \\
&\left.-\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right|^{2}\right]
\end{aligned}
$$

Towards the NLP cross section

$$
\begin{gathered}
\text { Process: } q\left(p_{1}\right) \bar{q}\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) g\left(p_{R}\right) \\
\quad \text { Shifts in Born amplitude } \\
\left|\mathscr{A}_{\mathrm{NLP}^{2}, q \bar{q}}\right|^{2}=\frac{\boldsymbol{C}_{\boldsymbol{F}}}{\boldsymbol{C}_{\boldsymbol{A}}}\left[\boldsymbol{C}_{\boldsymbol{F}} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\boldsymbol{\delta} p_{1 ; 2}, p_{2}+\boldsymbol{\delta} p_{2 ; 1}\right)\right|^{2}\right.
\end{gathered}
$$

After integration over phase space all LL terms up to NLP are obtained. Missing LP NLL terms are recovered by adding the $g \rightarrow g g(q \bar{q})$ splittings.

$$
\begin{aligned}
& +\frac{1}{2} C_{A} \frac{2 p_{2} \cdot p_{R}}{\left(p_{2} \cdot k\right)\left(p_{R} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{2}+\delta p_{2 ; R}, p_{R}-\delta p_{R ; 2}\right)\right|^{2} \\
& \left.-\frac{1}{2} C_{A} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}\left|\mathscr{M}_{\mathrm{LO}}^{q \bar{q}}\left(p_{1}+\delta p_{1 ; 2}, p_{2}+\delta p_{2 ; 1}\right)\right|^{2}\right]
\end{aligned}
$$

Prompt photon production

$$
p p \rightarrow \gamma+X
$$

qg channel

qg channel

but also:

qg channel

$$
g\left(p_{1}\right) q\left(p_{2}\right) \rightarrow \gamma\left(p_{\gamma}\right) g(k) q\left(p_{R}\right)
$$

Why only talk about gluon emission?

Soft gluon emission:

$$
\propto \mathcal{O}\left(\frac{1}{k}\right)
$$

Soft quark emission:

How to handle the soft quark contributions?

What happens?

When q becomes soft, this creates a contribution to the NLP logs

Note:
The hard process has now changed from $q g \rightarrow q \gamma$ to $q \bar{q} \rightarrow g \gamma$

Similar for final state splittings...

But they also interfere!

Full NLP NLO amplitude

$$
\begin{aligned}
\mathscr{A}_{\mathrm{NLP}}= & \sum_{i=1}^{n} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}}^{\text {Soft gluon contribution }} \\
& +\sum_{i=1}^{m} \mathbf{T}_{i} \frac{1}{2 p_{i} \cdot k} \widehat{Q}_{i} \otimes \mathscr{M}_{i, \mathrm{LO}}
\end{aligned}
$$

Quark emission operator

LL terms at LP and NLP

- By combining the soft quark and gluon amplitude, all LP + NLP LL terms are obtained
- All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly described up to LL NLP
- Also works for DIS and e+e- to jets
$\mathscr{A}_{\mathrm{NLP}}=\sum_{i=1}^{n} \mathbf{T}_{i}\left(\frac{2 p_{i}^{\sigma}-k^{\sigma}}{2 p_{i} \cdot k}-\frac{i k^{\alpha}}{p_{i} \cdot k} \Sigma_{i}^{\sigma \alpha}-\frac{i k^{\alpha}}{p_{i} \cdot k} L_{i}^{\sigma \alpha}\right) \otimes \mathscr{M}_{\mathrm{LO}}^{\text {Soft gluon contribution }}$

$$
+\sum_{i=1}^{m} \mathbf{T}_{i} \frac{1}{2 p_{i} \cdot k} \widehat{Q}_{i} \otimes \mathscr{M}_{i, \mathrm{LO}}^{\text {Soft quark contribution }}
$$

LL terms at LP and NLP

- By combining the soft quark and gluon amplitude, all LP + NLP LL terms are obtained
- All 7 NLO prompt photon channels [Gordon, Vogelsang, 1993] can be correctly described up to LL NLP
- Also works for DIS and e+e- to jets

Soft quarks and gluons generate all NLP LL contributions at NLO

Open questions:

1. How does this extend to higher orders?
2. What happens at NLP NLL, in particular with final state non-soft contributions?
3. NLP LL resummation for colour-singlet processes

LP resummation for colour-singlet processes

$$
\begin{aligned}
& \text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
& \text { Partonic cross section at LP: } \\
& \sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]
\end{aligned}
$$

LP resummation for colour-singlet processes

Consider $p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n}$ Partonic cross section at LP:
$\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]$
LP matrix element for DY and Higgs at LL is governed by soft emissions only, which can be factorized from the hard scattering

LP resummation for colour-singlet processes

$\begin{gathered}\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\ \text { Partonic cross section at LP: }\end{gathered}$
$\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]$
LP matrix element for DY and Higgs at LL is governed by soft emissions only,
which can be factorized from the hard scattering ' Eikonal diagrams exponentiate before phase space integration (Gatheral '83, Frenkel and Taylor '84)

LP resummation for colour-singlet processes

$$
\begin{aligned}
& \begin{array}{c}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\text { Partonic cross section at LP: }
\end{array} \\
& \sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right] \\
& \text { LP matrix element for DY and Higgs at LL is governed by soft emissions only, } \\
& \text { which can be factorized from the hard scattering }
\end{aligned}
$$

LP resummation for colour-singlet processes

Consider $p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n}$
Partonic cross section at LP:
$\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]$

LP matrix element for DY and Higgs at LL is governed by soft emissions only, which can be factorized from the hard scattering

* Eikonal diagrams exponentiate before phase space integration (Gatheral '83, Frenkel and Taylor '84)
\star Phase space for n soft-gluon radiations factorises (e.g. Forte and Ridolfi, 2002)

Therefore, the eikonal cross section at LP has an exponentiated form!

$$
\sigma \propto \sigma_{\text {hard }}(z, s) \times \sigma^{\text {eik }}(z) \quad \text { with } \quad \sigma^{\text {eik }} \propto \exp \left[S_{\mathrm{LP}}(z)\right]
$$

LP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\sigma^{\text {eik }} \propto \exp \left[S_{\mathrm{LP}}(z)\right] \quad \text { with } \quad \sigma \propto \sigma_{\text {hard }}(z, s) \times \sigma^{\text {eik }}(z)
\end{gathered}
$$

To separate kinematics of soft function from the hard part: go to Mellin space

$$
\int_{0}^{1} \mathrm{~d} z f(z) z_{\text {Threshold limit } z \rightarrow 1 \text { 'selected' for } N \rightarrow \infty}^{N-1}
$$

LP resummation for colour-singlet processes

$$
\begin{aligned}
& \text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
& \sigma^{\mathrm{res}, \mathrm{LP}}=\sigma_{\text {hard }} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} S_{\mathrm{LP}}(z)\right]
\end{aligned}
$$

LP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\sigma^{\mathrm{res}, \mathrm{LP}}=\sigma_{\text {hard }} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} S_{\mathrm{LP}}(z)\right] \\
=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{LP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
\end{gathered}
$$

LP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\sigma^{\mathrm{res}, \mathrm{LP}}=\sigma_{\mathrm{hard}} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} S_{\mathrm{LP}}(z)\right] \\
=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{LP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
\end{gathered}
$$

Soft-collinear contributions (splitting functions)

LP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\sigma^{\mathrm{res}, \mathrm{LP}}=\sigma_{\mathrm{hard}} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} S_{\mathrm{LP}}(z)\right] \\
=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{LP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
\end{gathered}
$$

wide-angle contributions

NLP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\text { Partonic cross section at NLP: } \\
\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{NLP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]
\end{gathered}
$$

NLP resummation for colour-singlet processes

$$
\begin{aligned}
& \text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
& \text { Partonic cross section at NLP: } \\
& \sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\underset{\mathrm{NLL} \text { only! }}{\left.\int \mathrm{d} \Phi_{\mathrm{NLP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\ldots\right]}\right.
\end{aligned}
$$

NLP resummation for colour-singlet processes

Consider $p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n}$
[1905.13710]
Partonic cross section at NLP:
$\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\int{\left.\mathrm{d} \Phi_{\mathrm{NL}}+\left.\mathbb{M}\right|_{\mathrm{LP}} ^{2}+\ldots\right]}\right.$
This contains only next-to-soft corrections at LL,
non-soft NLP enhancements are NLP NLL (and beyond)
[1410.6406, 1807.09246]

NLP resummation for colour-singlet processes

> Consider $p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n}$ Partonic cross section at NLP: $\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\int \mathrm{LS}_{\mathrm{N}}\right.$ LL $\begin{aligned} & \text { This contains only next-to-soft corrections at LL, } \\ & \text { non-soft NLP enhancements are NLP NLL (and beyond) }\end{aligned}$

Factorised ('external') next-to-soft-gluon emissions exponentiate [0811.2067,1010.1860]

NLP resummation for colour-singlet processes

$$
\begin{gathered}
\text { Consider } p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n} \\
\text { Partonic cross section at NLP: } \\
\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\int \mathrm{LS}_{\mathrm{LL}}\right. \\
\text { This contains only next-to-soft corrections at LL, } \\
\text { non-soft NLP enhancements are NLP NLL (and beyond) }
\end{gathered}
$$

Factorised ('external') next-to-soft-gluon emissions exponentiate [0811.2067,1010.1860]
Non-factorisable ('internal') emissions are linked by a shift in kinematics: $\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}+\mathrm{NLP}}^{2}=z K_{\mathrm{LP}} \sigma_{\mathrm{LO}}\left(Q^{2}\right)$

NLP resummation for colour-singlet processes

Consider $p_{1}+p_{2} \rightarrow Q+k_{1}+\ldots+k_{n}$
[1905.13710] Partonic cross section at NLP:

$$
\sigma=\frac{1}{2 s}\left[\int \mathrm{~d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{NLP}}^{2}+\int \mathrm{d} \Phi_{\mathrm{NL}} \mathbb{M L}_{\mathrm{LP}}^{2}+\ldots\right]
$$

This contains only next-to-soft corrections at LL, non-soft NLP enhancements are NLP NLL (and beyond)

Factorised ('external') next-to-soft-gluon emissions exponentiate [0811.2067,1010.1860]
Non-factorisable ('internal') emissions are linked by a shift in kinematics: $\int \mathrm{d} \Phi_{\mathrm{LP}}|\mathscr{M}|_{\mathrm{LP}+\mathrm{NLP}}^{2}=z K_{\mathrm{LP}} \sigma_{\mathrm{LO}}\left(Q^{2}\right)$

$$
\sigma^{\mathrm{res}, \mathrm{NLP}}=\sigma_{\text {hard }} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} z S_{\mathrm{LP}}(z)\right]
$$

NLP resummation for colour-singlet processes

$$
\begin{aligned}
\sigma^{\text {res,NLP }} & =\sigma_{\text {hard }} \exp \left[\int_{0}^{1} \mathrm{~d} z^{N-1} z S_{\mathrm{LP}}(z)\right] \\
& =\sigma_{\text {hard }} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{N L P}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z 05.13710]} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
\end{aligned}
$$

NLP resummation for colour-singlet processes

$$
\sigma^{\text {res,NLP }}=\sigma_{\text {hard }} \exp \left[\int_{0}^{1} d z^{N-1} z S_{\mathrm{LP}}(z)\right]
$$

$$
\begin{gathered}
=\sigma_{\text {hard }} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{NLP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right] \\
P_{i i}^{\mathrm{NLP}}=\frac{\alpha_{s}}{2 \pi} C_{i}\left[\left(\frac{1}{1-z}\right)_{+}-1+\cdots\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{gathered}
$$

Key is that the LL LP and NLP contributions come from a pole in ϵ that needs to be absorbed in parton distribution functions \rightarrow the NLP expansion of the splitting function generates this information

NLP resummation for colour-singlet processes

[1905.13710]

$$
\sigma^{\mathrm{res}, \mathrm{NLP} \text { LL }}=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{NLP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
$$

Note that this only works at NLP LL for 'LP-induced' colour-singlet processes:

NLP resummation for colour-singlet processes

[1905.13710]

$$
\sigma^{\mathrm{res}, \mathrm{NLP} \text { LL }}=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{NLP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
$$

Note that this only works at NLP LL for 'LP-induced' colour-singlet processes:
\star Beyond LL the phase space needs to be modified (leading to $Q^{2}(1-z)^{2} \rightarrow Q^{2}(1-z)^{2} / z$)
\star What is the contribution from non-soft collinear emissions?

NLP resummation for colour-singlet processes

[1905.13710]

$$
\sigma^{\mathrm{res}, \mathrm{NLP} \text { LL }}=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{NLP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
$$

Note that this only works at NLP LL for 'LP-induced' colour-singlet processes:
\star Beyond LL the phase space needs to be modified (leading to $\left.Q^{2}(1-z)^{2} \rightarrow Q^{2}(1-z)^{2} / z\right)$
\star What is the contribution from non-soft collinear emissions?

* The qg-induced channels are not considered here

NLP resummation for colour-singlet processes

[1905.13710]

$$
\sigma^{\mathrm{res}, \mathrm{NLP} \text { LL }}=\sigma_{\mathrm{hard}} \exp \left[2 \int_{0}^{1} \mathrm{~d} z^{N-1} \int_{\mu_{F}^{2}}^{Q^{2}(1-z)^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}} P_{i i}^{\mathrm{NLP}}\left(z, \alpha_{s}\left(q^{2}\right)\right)+\int_{0}^{1} \mathrm{~d} z^{N-1} \frac{1}{1-z} D\left(\alpha_{s}\left((1-z)^{2} Q^{2}\right)\right)\right]
$$

Note that this only works at NLP LL for 'LP-induced' colour-singlet processes:
\star Beyond LL the phase space needs to be modified (leading to $Q^{2}(1-z)^{2} \rightarrow Q^{2}(1-z)^{2} / z$)
\star What is the contribution from non-soft collinear emissions?

* The qg-induced channels are not considered here
* We saw that the kinematic shift for prompt photon is not factorisable

Consider single Higgs and DY

> We take both processes at NNLL + NLP LL resummed and match to NNLO
> Use PDF4LHC NNLO PDF set (so not resummed ones...)
> Set $\mu_{R}=\mu_{F}$

Verified our set-up with the results from existing codes

Consider single Higgs and DY

It seems that the NLP contribution is indeed subleading...

We vary $Q=m_{h}$

Consider single Higgs and DY

Consider single Higgs and DY

Consider single Higgs and DY

Consider single Higgs and DY

What about qg channels?

We don't know their resummation, but we can add the $\operatorname{NLP} \operatorname{LL} \mathcal{O}\left(\alpha_{s}^{3}\right)$ term

What about qg channels?

We don't know their resummation, but we can add the NLP LL $\mathcal{O}\left(\alpha_{s}^{3}\right)$ term

SCET vs dQCD at NLP

Conclusions

- NLP amplitude for soft gluons is universal and creates a shift to the Born matrix element
- This leads to NLP LL resummation for colour-singlet processes
- Numerical contribution of LL NLP terms varies for different processes, but in general it is not 'negligible'
- Understanding soft quark emissions is of importance!

Relevant for NLP LL for colour-singlet: Can we resum soft quarks?
Relevant for NLP LL in general: How to deal with 'wide-angle' NLP emissions?
Relevant for NLP NLL: What are 'next-to-collinear/non-soft' contributions?

What about prompt photon?

Here we do not know the NLP resummation, but can we use what we have learned from the DY and Higgs cases to estimate the class of NLP contributions that arise due to next-to-soft collinear momentum configurations?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

What about prompt photon?

Here we do not know the NLP resummation, but can we use what we have learned from the DY and Higgs cases to estimate the class of NLP contributions that arise due to next-to-soft collinear momentum configurations?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

But remember: no interference effects are taken into account in this way!

What about prompt photon?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

What about prompt photon?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

What about prompt photon?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

What about prompt photon?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

What about prompt photon?

Option 1: use diagonal splitting functions at NLP
Option 2b: use the DGLAP equations with off-diagonal dependence up to LL NLP
Option 2c: use the DGLAP equations with off-diagonal dependence without approximating

